Serveur d'exploration sur les chloroplastes dans l'oxydoréduction chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Oxidative stress induced in chloroplasts or mitochondria promotes proline accumulation in leaves of pea (Pisum sativum): another example of chloroplast-mitochondria interactions.

Identifieur interne : 000142 ( Main/Exploration ); précédent : 000141; suivant : 000143

Oxidative stress induced in chloroplasts or mitochondria promotes proline accumulation in leaves of pea (Pisum sativum): another example of chloroplast-mitochondria interactions.

Auteurs : Vetcha Aswani [Inde] ; Pidakala Rajsheel [Inde] ; Ramesh B. Bapatla [Inde] ; Bobba Sunil [Inde] ; Agepati S. Raghavendra [Inde]

Source :

RBID : pubmed:30206687

Descripteurs français

English descriptors

Abstract

Oxidative stress can occur in different parts of plant cells. We employed two oxidants that induce reactive oxygen species (ROS) in different intracellular compartments: methyl viologen (MV, in chloroplasts) and menadione (MD, in mitochondria). The responses of pea (Pisum sativum) leaf discs to MV or MD after 4-h incubation in dark or moderate (300 μE m-2 s-1) or high light (1200 μE m-2 s-1) were examined. Marked increase in ROS levels was observed, irrespective of compartment targeted. The levels of proline, a compatible solute, increased markedly much more than that of ascorbate or glutathione during oxidative/photo-oxidative stress, emphasizing the importance of proline. Further, the activities and transcripts of enzymes involved in biosynthesis or oxidation of proline were studied. An upregulation of biosynthesis and downregulation of oxidation was the basis of proline accumulation. Pyrroline-5-carboxylate synthetase (P5CS, involved in biosynthesis) and proline dehydrogenase (PDH, involved in oxidation) were the key enzymes regulated under oxidative stress. Since these two enzymes-P5CS and PDH-are located in chloroplasts and mitochondria, respectively, we suggest that proline metabolism can help to mediate inter-organelle interactions and achieve redox homeostasis under photo-oxidative stress.

DOI: 10.1007/s00709-018-1306-1
PubMed: 30206687


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Oxidative stress induced in chloroplasts or mitochondria promotes proline accumulation in leaves of pea (Pisum sativum): another example of chloroplast-mitochondria interactions.</title>
<author>
<name sortKey="Aswani, Vetcha" sort="Aswani, Vetcha" uniqKey="Aswani V" first="Vetcha" last="Aswani">Vetcha Aswani</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046</wicri:regionArea>
<wicri:noRegion>500046</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rajsheel, Pidakala" sort="Rajsheel, Pidakala" uniqKey="Rajsheel P" first="Pidakala" last="Rajsheel">Pidakala Rajsheel</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046</wicri:regionArea>
<wicri:noRegion>500046</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bapatla, Ramesh B" sort="Bapatla, Ramesh B" uniqKey="Bapatla R" first="Ramesh B" last="Bapatla">Ramesh B. Bapatla</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046</wicri:regionArea>
<wicri:noRegion>500046</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sunil, Bobba" sort="Sunil, Bobba" uniqKey="Sunil B" first="Bobba" last="Sunil">Bobba Sunil</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046</wicri:regionArea>
<wicri:noRegion>500046</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Raghavendra, Agepati S" sort="Raghavendra, Agepati S" uniqKey="Raghavendra A" first="Agepati S" last="Raghavendra">Agepati S. Raghavendra</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India. as_raghavendra@yahoo.com.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046</wicri:regionArea>
<wicri:noRegion>500046</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30206687</idno>
<idno type="pmid">30206687</idno>
<idno type="doi">10.1007/s00709-018-1306-1</idno>
<idno type="wicri:Area/Main/Corpus">000220</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000220</idno>
<idno type="wicri:Area/Main/Curation">000220</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000220</idno>
<idno type="wicri:Area/Main/Exploration">000220</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Oxidative stress induced in chloroplasts or mitochondria promotes proline accumulation in leaves of pea (Pisum sativum): another example of chloroplast-mitochondria interactions.</title>
<author>
<name sortKey="Aswani, Vetcha" sort="Aswani, Vetcha" uniqKey="Aswani V" first="Vetcha" last="Aswani">Vetcha Aswani</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046</wicri:regionArea>
<wicri:noRegion>500046</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rajsheel, Pidakala" sort="Rajsheel, Pidakala" uniqKey="Rajsheel P" first="Pidakala" last="Rajsheel">Pidakala Rajsheel</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046</wicri:regionArea>
<wicri:noRegion>500046</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bapatla, Ramesh B" sort="Bapatla, Ramesh B" uniqKey="Bapatla R" first="Ramesh B" last="Bapatla">Ramesh B. Bapatla</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046</wicri:regionArea>
<wicri:noRegion>500046</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sunil, Bobba" sort="Sunil, Bobba" uniqKey="Sunil B" first="Bobba" last="Sunil">Bobba Sunil</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046</wicri:regionArea>
<wicri:noRegion>500046</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Raghavendra, Agepati S" sort="Raghavendra, Agepati S" uniqKey="Raghavendra A" first="Agepati S" last="Raghavendra">Agepati S. Raghavendra</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India. as_raghavendra@yahoo.com.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046</wicri:regionArea>
<wicri:noRegion>500046</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Protoplasma</title>
<idno type="eISSN">1615-6102</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ascorbic Acid (metabolism)</term>
<term>Chloroplasts (metabolism)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Glutathione (metabolism)</term>
<term>Mitochondria (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Peas (genetics)</term>
<term>Peas (growth & development)</term>
<term>Peas (metabolism)</term>
<term>Plant Leaves (metabolism)</term>
<term>Proline (metabolism)</term>
<term>Proline Oxidase (metabolism)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Reactive Oxygen Species (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>ARN messager (métabolisme)</term>
<term>Acide ascorbique (métabolisme)</term>
<term>Chloroplastes (métabolisme)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Glutathion (métabolisme)</term>
<term>Mitochondries (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Pois (croissance et développement)</term>
<term>Pois (génétique)</term>
<term>Pois (métabolisme)</term>
<term>Proline (métabolisme)</term>
<term>Proline dehydrogenase (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Stress oxydatif (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Ascorbic Acid</term>
<term>Glutathione</term>
<term>Proline</term>
<term>Proline Oxidase</term>
<term>RNA, Messenger</term>
<term>Reactive Oxygen Species</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Pois</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Peas</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Peas</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>Pois</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Chloroplasts</term>
<term>Mitochondria</term>
<term>Peas</term>
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>Acide ascorbique</term>
<term>Chloroplastes</term>
<term>Espèces réactives de l'oxygène</term>
<term>Feuilles de plante</term>
<term>Glutathion</term>
<term>Mitochondries</term>
<term>Pois</term>
<term>Proline</term>
<term>Proline dehydrogenase</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Oxidation-Reduction</term>
<term>Oxidative Stress</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Oxydoréduction</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Stress oxydatif</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Oxidative stress can occur in different parts of plant cells. We employed two oxidants that induce reactive oxygen species (ROS) in different intracellular compartments: methyl viologen (MV, in chloroplasts) and menadione (MD, in mitochondria). The responses of pea (Pisum sativum) leaf discs to MV or MD after 4-h incubation in dark or moderate (300 μE m
<sup>-2</sup>
 s
<sup>-1</sup>
) or high light (1200 μE m
<sup>-2</sup>
 s
<sup>-1</sup>
) were examined. Marked increase in ROS levels was observed, irrespective of compartment targeted. The levels of proline, a compatible solute, increased markedly much more than that of ascorbate or glutathione during oxidative/photo-oxidative stress, emphasizing the importance of proline. Further, the activities and transcripts of enzymes involved in biosynthesis or oxidation of proline were studied. An upregulation of biosynthesis and downregulation of oxidation was the basis of proline accumulation. Pyrroline-5-carboxylate synthetase (P5CS, involved in biosynthesis) and proline dehydrogenase (PDH, involved in oxidation) were the key enzymes regulated under oxidative stress. Since these two enzymes-P5CS and PDH-are located in chloroplasts and mitochondria, respectively, we suggest that proline metabolism can help to mediate inter-organelle interactions and achieve redox homeostasis under photo-oxidative stress.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30206687</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>04</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1615-6102</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>256</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2019</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Protoplasma</Title>
<ISOAbbreviation>Protoplasma</ISOAbbreviation>
</Journal>
<ArticleTitle>Oxidative stress induced in chloroplasts or mitochondria promotes proline accumulation in leaves of pea (Pisum sativum): another example of chloroplast-mitochondria interactions.</ArticleTitle>
<Pagination>
<MedlinePgn>449-457</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00709-018-1306-1</ELocationID>
<Abstract>
<AbstractText>Oxidative stress can occur in different parts of plant cells. We employed two oxidants that induce reactive oxygen species (ROS) in different intracellular compartments: methyl viologen (MV, in chloroplasts) and menadione (MD, in mitochondria). The responses of pea (Pisum sativum) leaf discs to MV or MD after 4-h incubation in dark or moderate (300 μE m
<sup>-2</sup>
 s
<sup>-1</sup>
) or high light (1200 μE m
<sup>-2</sup>
 s
<sup>-1</sup>
) were examined. Marked increase in ROS levels was observed, irrespective of compartment targeted. The levels of proline, a compatible solute, increased markedly much more than that of ascorbate or glutathione during oxidative/photo-oxidative stress, emphasizing the importance of proline. Further, the activities and transcripts of enzymes involved in biosynthesis or oxidation of proline were studied. An upregulation of biosynthesis and downregulation of oxidation was the basis of proline accumulation. Pyrroline-5-carboxylate synthetase (P5CS, involved in biosynthesis) and proline dehydrogenase (PDH, involved in oxidation) were the key enzymes regulated under oxidative stress. Since these two enzymes-P5CS and PDH-are located in chloroplasts and mitochondria, respectively, we suggest that proline metabolism can help to mediate inter-organelle interactions and achieve redox homeostasis under photo-oxidative stress.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Aswani</LastName>
<ForeName>Vetcha</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rajsheel</LastName>
<ForeName>Pidakala</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bapatla</LastName>
<ForeName>Ramesh B</ForeName>
<Initials>RB</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sunil</LastName>
<ForeName>Bobba</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Raghavendra</LastName>
<ForeName>Agepati S</ForeName>
<Initials>AS</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-7376-4947</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India. as_raghavendra@yahoo.com.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>09</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Austria</Country>
<MedlineTA>Protoplasma</MedlineTA>
<NlmUniqueID>9806853</NlmUniqueID>
<ISSNLinking>0033-183X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9DLQ4CIU6V</RegistryNumber>
<NameOfSubstance UI="D011392">Proline</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.5.3.-</RegistryNumber>
<NameOfSubstance UI="D011394">Proline Oxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>PQ6CK8PD0R</RegistryNumber>
<NameOfSubstance UI="D001205">Ascorbic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001205" MajorTopicYN="N">Ascorbic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002736" MajorTopicYN="N">Chloroplasts</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="Y">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018532" MajorTopicYN="N">Peas</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011392" MajorTopicYN="N">Proline</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011394" MajorTopicYN="N">Proline Oxidase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Compatible solute</Keyword>
<Keyword MajorTopicYN="N">Menadione</Keyword>
<Keyword MajorTopicYN="N">Methyl viologen</Keyword>
<Keyword MajorTopicYN="N">P5CS</Keyword>
<Keyword MajorTopicYN="N">PDH</Keyword>
<Keyword MajorTopicYN="N">Redox homeostasis</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>05</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>08</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>9</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>4</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>9</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30206687</ArticleId>
<ArticleId IdType="doi">10.1007/s00709-018-1306-1</ArticleId>
<ArticleId IdType="pii">10.1007/s00709-018-1306-1</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Methods Mol Biol. 2000;132:365-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10547847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biofactors. 2001;15(2-4):75-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12016329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Jan;113(1):249-257</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Dec;32(6):891-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12492832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 Nov;8(11):546-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14607100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2004 Mar;120(3):442-450</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15032841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(4):871-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17446888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Amino Acids. 2008 Nov;35(4):753-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18379856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 May;2(3):390-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Feb;15(2):89-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20036181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2010 Dec;48(12):909-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20870416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2011 Jul;72(10):1081-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21146842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Apr;155(4):1947-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21311034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biosci. 2011 Mar;36(1):163-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21451257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Feb;35(2):454-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21777251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Sep;157(1):292-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21791601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Feb;63(3):1445-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22140244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2012 Apr 15;169(6):577-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22305050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Jun;70(5):831-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22313226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2012 Nov;7(11):1456-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22951402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Sep 20;19(9):1036-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23259603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 May;162(1):470-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23471133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Sep 20;19(9):998-1011</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23581681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Apr 29;8(4):e62085</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23637970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Feb;37(2):300-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23790054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jun 14;8(6):e67106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23799142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2013 Nov;117(1-3):61-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23881384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pest Manag Sci. 2014 Sep;70(9):1316-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24307186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1987 Apr;162(1):156-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2440339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2015 Jun 18;16(6):13989-4006</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26096005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Dec;208(4):1138-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26180024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Sep 29;6:792</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26483809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Jul 26;6:30338</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27455877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Oct;172(2):1074-1088</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27512016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Aug 31;7:1339</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27642286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2017 Jun;245(6):1067</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28456836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Oct 26;12(10):e0186713</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29073280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">388439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1970 Aug 15;227(5259):680-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5432063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1980 Jul 15;106(1):207-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7416462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Aug;8(8):1323-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8776899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8249-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9223347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Inde</li>
</country>
</list>
<tree>
<country name="Inde">
<noRegion>
<name sortKey="Aswani, Vetcha" sort="Aswani, Vetcha" uniqKey="Aswani V" first="Vetcha" last="Aswani">Vetcha Aswani</name>
</noRegion>
<name sortKey="Bapatla, Ramesh B" sort="Bapatla, Ramesh B" uniqKey="Bapatla R" first="Ramesh B" last="Bapatla">Ramesh B. Bapatla</name>
<name sortKey="Raghavendra, Agepati S" sort="Raghavendra, Agepati S" uniqKey="Raghavendra A" first="Agepati S" last="Raghavendra">Agepati S. Raghavendra</name>
<name sortKey="Rajsheel, Pidakala" sort="Rajsheel, Pidakala" uniqKey="Rajsheel P" first="Pidakala" last="Rajsheel">Pidakala Rajsheel</name>
<name sortKey="Sunil, Bobba" sort="Sunil, Bobba" uniqKey="Sunil B" first="Bobba" last="Sunil">Bobba Sunil</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ChloroPlantRedoxV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000142 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000142 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ChloroPlantRedoxV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30206687
   |texte=   Oxidative stress induced in chloroplasts or mitochondria promotes proline accumulation in leaves of pea (Pisum sativum): another example of chloroplast-mitochondria interactions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30206687" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroPlantRedoxV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:07:36 2020. Site generation: Sat Nov 21 12:08:05 2020